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The spectral energy transfer of turbulent velocity fields has been examined 
over a wide range of Reynolds numbers by experimental and empirical methods. 
Measurements in a high Reynolds number grid flow were used to calculate the 
energy transfer by the direct Fourier-transform method of Yeh & Van Atta. 
Measurements in a free jet were used to calculate energy transfer for a still 
higher Reynolds number. An empirical energy spectrum was used in con- 
junction with a local self-preservation approximation to estimate the energy 
transfer at Reynolds numbers beyond presently achievable experimental 
conditions. 

Second-order spectra of the grid measurement& are in excellent agreement 
with local isotropy down to low wavenumbers. For the first time, one-dimensional 
third-order spectra were used to test for local isotropy, and modest agreement 
with the theoretical conditions was observed over the range of wavenumbers 
which appear isotropic according to second-order criteria. Three-dimensional 
forms of the measured spectra were calculated, and the directly measured energy 
transfer was compared with the indirectly measured transfer using a local self- 
preservation model for energy decay. The good agreement between the direct 
and indirect measurements of energy transfer provides additional support for 
both the assumption of local isotropy and the assumption of self-preservation in 
high Reynolds number grid turbulence. 

An empirical spectrum was constructed from analytical spectral forms of von 
KkmAn and Pao and used to extrapolate energy transfer measurements at lower 
Reynolds number to RA = lo5 with the assumption of local self preservation. 
The transfer spectrum at this Reynolds number has no wavenumber region of 
zero net spectral transfer despite three decades of k-g behaviour in the empirical 
energy spectrum. A criterion for the inertial subrange suggested by Lumley 
applied to the empirical transfer spectrum is in good agreement with the k 4  range 
of the empirical energy spectrum. 

t Present address: Science Applications, Inc., 8400 W. Park Dr., McLean, Washington. 
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1. Introduction 
The nonlinear dynamics of spectral energy transfer has been a central problem 

in turbulence research. Early theoretical efforts which ignored the third-order 
velocity correlations have generally been abandoned and attempts to describe 
turbulent flows usually model the most important, if not all, nonlinear terms. 
Many attempts have been made to predict the form of the energy spectrum by 
closing the system of governing equations with ad hoc hypotheses. The approach 
is one of reasoned physical and dimensional arguments to determine the relation- 
ship between the spectral energy transfer and the energy spectra. The hypothesis 
closes the governing differential equations, and the resulting energy spectrum is 
compared with measurements. The procedure is appealing because it offers the 
possibility of providing insight into the physical nature of the energy-transfer 
process. On the other hand, the interaction mechanisms modelled by the hypo- 
thesis cannot be tested directly, and the energy spectrum is often insensitive to 
the closure model. 

The first successful measurements of the net energy transfer spectrum were 
made by Uberoi (1963), who measured the energy decay and dissipation spectra 
in grid turbulence and inferred the energy transfer spectrum indirectly under the 
assumption of isotropy. Van Atta & Chen (1969) used fast Fourier transform 
methods to derive the net energy transfer spectrum directly from measurements 
of the third-order velocity corre1ations.t They obtained good agreement between 
direct and indirect measurements of the energy transfer spectrum, thus verifying 
the assumption of local isotropy at third order. Yeh & Van Atta (1973) simplified 
the direct calculation technique of Van Atta & Chen and extended the measure- 
ments to scalar energy transfer spectra. 

The studies referred to above have emphasized measurements of the net energy 
transfer spectra in grid turbulence. However, the net energy transfer spectrum is 
a limited end in itself, for it represents only the net transfer of energy into or out 
of each wavenumber. It gives no information about the nonlinear interactions 
among arbitrarily separated wavenumbers. Yeh & Van Atta (1973) described 
schematically the very complicated measurements which would be necessary to 
obtain information about wavenumber-wavenumber energy transfer. The 
required measurements appear impractical for the time being, but the present 
investigation as well as those in the past should be viewed as preliminary steps 
necessary before a multi- wavenumber energy transfer spectrum could be 
measured. 

In  the present investigation the net energy transfer spectrum is calculated 
from experimental data at  Reynolds numbers significantly larger than those of 
previous investigators. High Reynolds number measurements in both a decay- 
ing grid flow and a large free jet are used. The analysis of grid data obtained 
by one of us (GRS) a t  Colorado State University (CSU) forms the major part of 
this investigation. I n  addition, data from a very high Reynolds number jet 
obtained by C. A. Friehe and associates at  the University of California, San 

t The term ' net energy transfer' is used heIe to mean the net gain or loss of kinetic energy 
at  a wavenumber k from all other wavenumbers. 
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Diego (UCSD), are used to combine an investigation of energy transfer at an 
even higher Reynolds number with direct calculations of the energy transfer 
spectrum in a shear flow. The analysis of both grid and jet flows provides an 
opportunity to compare the energy transfer calcuIations in a nearly isotropic flow 
with those in a shear flow containing a large range of anisotropic wavenumbers. 
The validity of the isotropic assumption for the CSU grid data is tested using 
second-order spectral techniques, and for the first time one-dimensional third- 
order isotropic spectral relations are used as a higher-order isotropy test analogous 
to the usual second-order methods. 

2. Problem formulation 
The equations appropriate to homogeneous, isotropic, decaying grid turbu- 

lence are reviewed in this section. Derivations of these equations may be found 
in Batchelor (1953, chap. 3 )  and Hinze (1959, chap. 3 ) ,  and various forms of the 
energy transfer spectra are discussed in Yeh & Van Atta (1973) .  The isotropic 
equation for the decay of the three-dimensional energy spectrum E ( k )  is 

a q w y a t  = ~ ( k )  - z v k ~ ( l c ) ,  (2 .1)  

where each term is related to a measurable one-dimensional spectrum. The 
function I’(k)  is the net three-dimensional energy transfer spectrum representing 
the balance of energy transfer into the wavenumber k from all other wave- 
numbers. Pressure does not appear explicitly in (2 .1 )  because of the incom- 
pressibility assumption. The terms in (2 .1)  are not directly measurable, and the 
relationship of each term to an isotropically related, one-dimensional, measurable 
spectrum is summarized in this section. 

The three-dimensional energy spectrum E(k) ,  sometimes referred to as the 
‘ wavenumber-magnitude ’ spectrum, is related to the one-dimensional total 
energy spectrum $,i(kl) by 

E ( k )  = - kld$&l)/dk,, (2 .2 )  

where k and k, are interchangeable in a spherically symmetric isotropic repre- 
sentation. The summation convention implies 

$ii(%) = $ l l ( h )  + $ P Z ( k l )  $- $ 3 3 ( h )  ( 2 . 3 )  

$ Z Z ( k l )  = $d3(kl)  (2 .4 )  

and application of isotropic relations yields 

and (2 .5 )  

Measurement in an isotropic flow of either $I, (k,) alone or both $,, (k,)  and $22(kl) 
permits the calculation of &(k,) and, therefore, the three-dimensional spectrum 

The one-dimensional spectrum $i i (k l )  is related to the second-order corre- 
E(k)*  

lation by 

22-2  
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where * denotes the complex conjugate and 
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m 

- m  
= (27r)-lj ui(xl, 0, O)exp{-iklxl}dxl 

is the one-dimensional Fourier transform of ui(xl). The integral of (2.2) is 

2JmE(k)dk  = Jm - m  q5ii(kl)dkl = (uiui), 
0 

(2.7) 

where (uiui> = qz is twice the total kinetic energy. Nobe that the definitions of 
&(kl) and E(k)  used here differ from those of some authors who include a factor 
of 2 within the definition of q5ii and E. The three-dimensional dissipation spectrum 
is defined by 

D(k) = 2vk2E(k). (2.91 

The net transfer spectrum T(k)  is related to measurable one-dimensional 
spectral forms in much the same way as the energy spectrum E(k)  described above. 
The three-dimensional energy transfer spectrum is related to a one-dimensional 
total energy transfer spectrum Sli, ,(kl) by 

T(k)  = - 4&&, c(kJ1 + 2kldPlS1, &)I/% (2.10) 

where k and k, are again interchangeable in a spherically symmetric isotropic 
representation. The summation convention implies 

81, ,(kl) = Im(s11, l(kl) +'I, 2.(k1)'+S13, 3 ( h ) )  (2.11) 

and after using the isotropic condition, the relationships among the individual 
transfer spectra are 

813,3(kl) = s12,2(kl), (2.12) 

Im {SlZ, 2(kl)} = t[Im Pll, 1(k1)1- kl d Im {SlL l ( k l ) } / W  (2.13) 

These third-order expressions are analogous to those among the energy spectra. 
The one-dimensional transfer spectrum is equivalent to the Fourier transform 
of the two-point third-order correlation 

(2.14) 

which after application of the convolution theorem becomes 

where the additional measurable Fourier transform is defined by 

m 

qi(k1) = (27r)-l ( ul(xl, 0, O)ui(xl, 0, O)exp{-iklxl)dxl. (2.16) 
J -m 

The definitions of the Fourier transforms in (2.7) and (2.16) apply to the 
instantaneous velocity field as well as to the averaged spectral quantities. 
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One additional assumption is made to permit simple evaluation of the Fourier 
transforms of (2.7) and (2.16): time and space are related using the frozen-flow 
hypothesis of Taylor. This assumption has been checked for grid turbulence 
experimentally by Favre, Gaviglio & Dumas (1955) using correlation functions 
and by Stegen & Van Atta (1970) using cross-spectral analysis. 

3. Experimental data 
Grid turbulence 

The measurements of grid turbulence were made at CSU by one of us (GRS) in 
a closed-circuit wind tunnel with a 1.8 x 1.8 x 24-3 m test section. A biplanar grid 
with a square mesh ( M  = 22.9cm) and square rods (3.81 cm) was located one 
tunnel diameter downstream from the entrance to the test section. The tunnel 
was operated at  a mean speed of 2900 cm/s, giving a grid Reynolds number of 
410000. A cooling system was required to provide steady conditions, and the 
resulting temperature at the operating speed was 1 "C. The mean velocity (D) 
and velocity fluctuations in the longitudinal (ul) and transverse (u2) directions 
were measured at downstream locations of X / M  = 36,38 and 41, where X is the 
distance from the grid. AX detailed calculations in the present study were made 
at X / M  = 38. Additional details of the experimental conditions are given by 
Schedvin, Stegen & Gibson (1974). 

The fluctuating velocities were measured with an X-wire array (Thermo- 
Systems, Inc. Model 1241-T1.5). The sensors were operated in the constant- 
temperature mode using DISA Model 55D01 hot-wire anemometer systems and 
were linearized with DISA Model 56D10 linearizers. Sum and difference amplifiers 
were used to obtain voltage signals proportional to u1 and u2. The velocity 
fluctuations and their time derivatives generated by electronic differentiation 
were recorded on an Ampex FR1300 FM tape recorder at a speed of 6Oin.l~. 
The analog tapes were played back at  UCSD on a Sangamo 3500 FM tape recorder 
at a speed of 7*5in./s (8:l speed reduction) to accommodate the maximum 
obtainable sample rate of the AMES digitizer system. The velocity fluctuations 
were low-pass filtered (cut-off a t  14400Hz, real time), sampled with an analog- 
to-digital convertor at a rate off, = 33370 samples/s (real time) and recorded 
on digital tape with 12 bit resolution. 

The Kolmogorov frequency estimated from f k  = 0/2n7, where 7 is the 
Kolmogorov length scale, was about 20 900 Hz. The calculations of Schedvin 
et al. (1974) with nearly identical data from this experiment show that the - 3 dB 
point due to  finite hot-wire attenuation of the energy spectrum occurs at  a 
frequency of about 3700Hz. In  view of the large difference between the Kolmo- 
gorov frequency and the half-power frequency due to finite wire length the low- 
pass filter was set at 14 400 Hz, and the data were digitized with a Nyquist 
frequency of 16 680 Hz. This provided an optimum trade-off between adequate 
sampling bandwidth and frequency resolution Af = 1/N At, where N is the num- 
ber of samples in the discrete Fourier transform and At = I/f, is the sampling 
interval. The transform sample size N was chosen to be 4096, giving a resolution 
of Af = 8-15Hz. 
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CSU grid 
38 

2900 
410000 
0.162 
17 800 
237 
0.022 
7.32 
184 
617 
1-51 

22.9 

UCSD jet 
60.5t 
29.21- 
362 

0.155 
23 900 
95 1 
0.0199 
7.80 
736 
4900 
1.3 

800 OOO$ 

t Based on jet exit diameter D. 
$ Based on jet exit velocity go and diameter D. 

TABLE 1. Physical pmameters for CSU grid and UCSD jet measurements. 

Axisymmetric jet turbulence 

The measurements of jet turbulence were made in the UCSD gymnasium by 
C. Friehe and coworkers and kindly lent to us for this study. A large vaneaxial 
fan manufactured by Joy was supported with its centre-line 4.60m above the 
floor. The fan had an exit diameter of 29-2cm and was operated with an exit 
velocity U ,  of 40 m/s, giving a jet Reynolds number Re, = go D/v of 800 000. 
The mean velocity B and the longitudinal fluctuating velocity u1 were measured 
on the jet centre-line at  an XID of 60.5, where X is the distance from the jet exit 
plane. 

The longitudinal velocity was measured with a single hot-wire probe (Thermo- 
Systems,Inc.,ModelI21O-Tl.O) withaspecialshort ( Z w =  0.5mm), smalldiameter 
(d, = 0.002 54mm) sensor to minimize effects of finite wire length. The sensor 
was operated in the constant-temperature mode using a DISA Model 55A01 hot- 
wire anemometer and linearized with a DISA Model 55DIO linearizer. The 
velocity signal was recorded with a Sangamo Model 3500FM tape recorder at 
6Oin.l~. The analog signal was played back through a low-pass filter set at 
4kHz, digitally sampled at  a rate off, = 8340Hz and recorded on digital tape 
with 12 bit resolution. The Kolmogorov frequency was about 2900Hz. The 
transform size N was 4096, giving a frequency resolution of Af = 3.04 Hz. The 
parameters for the grid and jet flow;s are given in table 1. 

4. Experimental results for CSU grid 
One-di.mensiona1 second-order spectra 

The measured transverse spectrum q522 is compared with the transverse spectrum 
determined from the isotropic relation (2.5) and the measured longitudinal 
spectrum $11 in figure I. The first moment of the spectrum is used to emphasize 
the intermediate and high wavenumbers, which are expected to be the most 
nearly isotropic. The agreement between measured and calculated spectra is good 
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FIGURE 1. Comparison of measured and derived second-order spectra, for CSU grid. 
0 9  $11; A> h 2 ; -  , derived from $11 by isotropy [equa.tion (2.5)]. 

down to a wavenumber of log k , ~  z - 3.2. The extent of isotropy found in the 
CSU data is much larger than that found by Kistler & Vrebalovich (1966) for grid 
turbulence at  similar grid Reynolds numbers. These results are in good agreement 
with the spectral analysis of the CSU grid data by Schedvin et al. (1974), who 
applied the energy spectral test for isotropy to a separate set of data obtained a t  
CSU under nearly the same operating conditions. Schedvin et al. also compare in 
detail the CSU grid measurements with the measurements of Kistler & 
Vrebalovich. 

The total one-dimensional energy spectrum $ii is calculated from q511 and the 
isotropic relations (2.3) and (2 .5 ) ,  and the one-dimensional total energy decay 
spectrum 8q5,i/8t is calculated from the $ii spectrum using an assumption of local 
self-preservation. The wire-length correction determined for the CSU data by 
Schedvin et al. (1974) was applied to the q511 spectrum for this investigation. 
Previous investigators have been able to estimate the energy decay spectrum 
directly by measuring energy spectra at several downstream locations and using 
the approximation - -  

i& -A& - Aln$(( at M u - = uq5..- 
Ax " Ax 

at each wavenumber. Unfortunately (4.1) could not be used for either the CSU 
grid data or the UCSD jet data. Measurements of the CSU grid turbulence 
were made at  a number of closely spaced values of X I M ,  but the decay of 
energy between measurement points was too small to permit accurate use of 
(4.1). 

A self-preservation assumption was used to estimate energy decay spectra for 
the CSU grid and UCSD jet data to allow comparison of indirect estimates of 
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FIGURE 2. Squased coherence between velocities u1 and u, for CSU grid measurements. 
Bars denote peak-to-peak variation of the measurements. 

the energy transfer spectra with the direct Fourier calculations. The resulting 
decay spectrum can be expressed in terms of local quantities to give 

for the spectral decay of the total one-dimensional spectrum appropriate for 
grid turbulence. The decay constant vi/q27 is obtained from the measured 
spectrum, where vk is the Kolmogorov velocity scale. Equation (4.2) provides a 
method of testing the assumption of local self-preservation in the wavenumber 
domain. Equation (4.2) was tried for the grid-turbulence data of Uberoi (1963), 
Van Atta & Chen (1969), and others, and the results reported by Helland (1974) 
show that the approximation of self-preservation can provide a good estimate of 
the energy decay spectrum in grid turbulence. The assumption of isotropy does 
not apply below a certain wavenumber; in particular, for the CSU data it ceases 
to apply belowlog 7ey w - 3.2 according to the results in figure 1. Forcing the decay 
spectrum to satisfy this constraint may introduce errors in calculations per- 
formed at large wavenumber owing to the failure of isotropy at small wavenumber 
as pointed out by Van Atta & Chen in their discussion of the indirect calculations 
by Uberoi of transfer spectra. 
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FIGURE 3. One-dimensional complex third-order spectre, for CSU grid measurements. 
0, imaginary part ; A, real part. (a) ( ~ ~ T ) ~ & , J ( $ / T ) ,  (b)  (k1 V&~,J($/T). 
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The coherence between the velocities u1 and u2 is presented in figure 2. The 
coherence is uniformly small for all wavenumbers except for a 7 kHz noise spike. 
For truly isotropic turbulence the coherence should be identically zero, but the 
small measured value is consistent with nearly isotropic turbulence. While the 
coherence function must be small for approximate validity of isotropy, there is no 
quantitative criterion which permits an objective determination of the approach 
to isotropy. For the CSU grid data, the coherence remains small and shows no 
tendency to increase at small wavenumber as it did, for instance, in the coherence 
measurements of velocity and temperature in the grid data of Yeh & Van Atta 
(1973). The residual coherence between u1 and u2 may be an indication of cross- 
talk in the X-wire array, or it may signify real deviations from isotropy. It is not 
possible to determine which without additional measurements. We sugges ti, for 
example, that X-wire measurements in a shear flow at the same Reynolds 
number would help to determine whether the finite coherence obtained in grid 
turbulence is a result of anisotropy or cross-talk. We expect that in a shear flow 
the approach to isotropy would be significantly reduced in comparison with grid 
turbulence. This is confirmed by Pierce (1972), who reports a coherence of 0.04 
between au,/at and au2/at in a turbulent jet, significantly higher than the 
coherence of 0.01 reported herein for the CSU grid measurements. Note that 
coherence between velocity derivatives must be identical to that for the velocities 
themselves. Since coherence is non-dimensional, the properties of the Fourier 
transforms of derivatives result in cancellation of the multiplicative frequency 
factors which appear in the transforms of the derivatives. 

One-dimensional third-order spectra 
The complex one-dimensional longitudinal third-order cross- spectrum S, ,  , is 
presented in figure 3 (a).  The real part of the spectrum is small compared with the 
imaginary part at  low wavenumber, but at  high wavenumber the real and 
imaginary parts are of the same order of magnitude. This is an apparent contra- 
diction of the assumption of isotropy, which requires the real parts of the third- 
order cross-spectra to be zero. The condition is easy to  see when one recalls that 
the reflexion condition of isotropy requires that a third-order correlation, say 
(ul(x) u;(x + r ) ) ,  be antisymmetric in r about the origin for all lags r .  The pro- 
perties of the Fourier transform of an odd real function then require that the real 
part of the corresponding transform, the cospectrum of u1 with u:, be zero for all 
wavenumbers. Z t  is not:known how small the rea.1 part must be to remain approxi- 
mately consistent with isotropy, in analogy with the problem encountered in 
interpreting the coherence between u1 and u2 in the previous subsection. The 
complex one-dimensional mixed longitudinal and transverse third-order cross- 
spectrum X,, is presented in figure 3 (b) .  Again the real and imaginary parts are 
of the same order of magnitude for large wavenumbers. 

Analytical forms for wire-length corrections for higher-order spectra are not 
available and hence cannot be applied to the measured higher-order spectra a t  
the present time. However, since T ( k )  is calculated both directly without wire- 
length corrections and indirectly with wire-length corrections, some est,imate can 
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FIGURE 4. Comparison between measured and derived one-dimensional third-order spectra 
for CSU grid. 0, measured; -, derived from Im {k:Sll, by isotropy C(2.12) and:(2.13)]. 
(4 Im {k;&2,21, (b)  k;&*i. 

be made of the errors due to finite wire length, but further discussion will be 
postponed until the calculations for T ( k )  have been presented. 

I n  figure 4 ( a )  the isotropic test implied by (2.13) is applied to the measured and 
calculated third-order cross-spectrum Im LS,~, 2. The agreement is excellent at  the 
lowest and highest wavenumbers with only moderate agreement at the inter- 
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FIGURE 5. Comparison of three-dimensional energy spectra. A, CSU grid; A,  UCSD jet; 
-, von KBrmAn-Pao spectrum fit to UCSD jet data. 

mediate wavenumbers. This is the first time third-order cross-spectra have been 
used as a test for isotropy. Further calculations of this nature should be made to 
include the data of Van Atta & Chen (1969). The near antisymmetry of their 
third-order correlations suggests that better agreement with isotropy may be 
obtained for their third-order cross-spectra. 

The total one-dimensional transfer spectrum S,, derived from Im S,, using 
(2.13) is compared in figure 4 ( b )  with the direct measurement. Agreement is good 
at the highest wavenumbers with moderate agreement at low and intermediate 
wavenumbers. The possible influence of the order of data processing operations 
was carefully checked for this measurement. First, the raw, unsmoothed estimates 
of Im S,, , and Im S,,,, were combined according to (2.11) and then smoothed to 
form Sli,i. Second, the estimates of Im S,,,  and Irn S,,,  were each smoothed 
andthen combinedaccording to (2.11) to form The two one-dimensional total 
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- 4  -3 -2 -1 0 1 

log k7 
F I G ~ E  6 .  Comparison of three-dimensional energy decay spectra calculated assuming local 
self-preservation. A, CSU grid; a, UCSD jet; - , von KitrmBn-Pao spectrum fit t o  
UCSD jet data. 

transfer spectra were in excellent agreement, and only the f i s t  case is shown in 
figure 4 (b ) .  This is an important check on the consistency of the smoothing opera- 
tion. The one-dimensional transfer spectra s,,,* and Im S,,,, were both used to 
determine three-dimensional transfer spectra so that an estimate could be made 
of the sensitivityof T to small differences in the one-dimensional transfer spectra. 

Three-dimensional spectra 

The three-dimensional energy spectrum derived from the one-dimensional total 
energy spectrum and (2.2) is shown in figure 5.  The three-dimensional energy 
decay spectrum determined from the approximation of local self-preservation is 
presented in figure 6. The directly measured three-dimensional energy transfer 
spectra derived from the one-dimensional transfer spectra using (2.10) are 
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FIGURE 7.  Comparison of three-dimensional energy transfer spectra for CSU grid. Direct 
estimates: 0, from Im {kiS,,, 0, from k?Sli, i. Indirect estimates with local self-preserva- 
tion: A, from measured energy spectrum; -, from empirical von Khrmhn-Pao energy 
spectrum. 

compared in figure 7 with the indirectly measured transfer spectrum derived 
from (2.1). The two directly measured transfer spectra are in good agreement at 
high and low wavenumbers but differ a t  the intermediate wavenumbers. This 
behaviour is consistent with the differences observed in S,,,, in figure 4 ( b ) .  The 
indirectly calculated transfer spectrum derived from the local self-preservation 
approximation is in fair agreement with the direct measurements a t  low and inter- 
mediate wavenumbers. These two measurements become significantly different 
for log kv > - 0.5. The disagreement at large wavenumbers might indicate a 
limitation of the self-preservation approximation, distortion due to wire-length 
effects, lack of isotropy or a combination of all three. It is not possible with the 
present data to determine the source of the disagreement between the direct 
estimate and the self-preservation prediction. However, considering the limita- 
tions of the CSU grid data, the agreement at low and intermediate wavenumbers 
suggests that we have successfully determined most of the three-dimensional 
energy transfer spectrum at a moderately high Reynolds number. 

5. Experimental results for UCSD jet 
One-dimensional spectra 

The measured one-dimensional third-order cross-spectrum S,,, is shown in 
figure 8. The real part should be small if the jet flow is isotropic, but the real part 
of the measured spectrum is about an order of magnitude larger than the 
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FIGURE 8. One-dimensional complex third-order spectrum ( k 1 ~ ) 2  Sll, J(w:/q) of longitu- 
dinal velocity for USCD jet measurements. 0, imaginary part; A, reel part. 

imaginary part. For comparison, the real parts of the third-order spectra 
for the CSU grid data in figure 3 are about the same magnitude as their corre- 
sponding imaginary parts. This suggests that the approach to isotropy by the 
grid turbulence is closer than that for the jet turbulence. It should be emphasized, 
however, that at present we can only use the magnitude of the real part of the 
third-order spectrum as a qualitative indication of the approach to isotropy. 
It is not clear how small the real part of the third-order spectrum must be in order 
to make isotropy a reasonable approximation in the calculation of the third- 
order energy transfer spectrum T ( k ) .  Additional experimental work in flows with 
varying degrees of anisotropy is needed before quantitative conclusions will be 
possible. 

Three-dimensional spectra 

The three-dimensional energy spectrum E(k)  derived from the one-dimensional 
energy spectrum q5ii is compared in figure 5 with the CSU grid spectrum. The local 
self-preservation approximation to the one-dimensional total energy decay 
spectrum was used to determine the three-dimensional energy decay spectrum 
shown in figure 6. Finally, the indirectly measured three-dimensional transfer 
spectrum for the UCSD jet is compared in figure 9 with the directly measured 
transfer spectrum. 

The agreement between the measured energy transfer spectrum and the self- 
preservation estimate is remarkably good at intermediate wavenumbers but 
deteriorates at the highest wavenumbers. The agreement may be fortuitous in 
view of the number of possible causes of disagreement. These include failures of 
the approximation of local self-preservation or Taylor's hypothesis in high 
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FIGURE 9. Comparison of three-dimensional energy transfer spectra for UCSD jet. 0, direct 
estimate from Im {k~Sl1,  Indirect estimate with local self-preservation: A, from measured 
energy spectrum; -, from empirical von K6rmtin-Pao energy spectrum. 

intensity turbulence and lack of isotropy. The energy-spectrum test for isotropy 
used in the analysis of the CSU grid data is not possible for the UCSD jet as only 
one component of the velocity was measured. Few such investigations have been 
made on the validity of isotropy in turbulent jets, and the results are conflicting. 
I n  particular, the measurements of q511 and dez by Gibson (1963) in a high Reynolds 
number axisymmetric jet show good agreement with isotropy at wavenumbers 
log ky > - 2.8, but unpublished measurements of a similar energy-spectrum test 
of isotiopy by Champagne (private communication) in an axisymmetric jet show 
agreement at  second order with isotropy only for log E,y > - 1.2. The calculation 
of the energy transfer spectrum by direct and indirect methods provides the only 
spectrally selective test of isotropy possible with only the measurement of the 
longitudinal velocity component available from the UCSD jet data. The early 
measurements of the shear correlation coefficient for a narrow band of frequencies 
by Corrsin & Uberoi (1951) show a trend consistent with local isotropy at  high 
wavenumbers (or frequencies). The frequency-dependent shear correlation is 
related to the coherence measurement discussed previously. Unfortunately their 
measurements did not include both the longitudinal and the radial energy spectra 
so it is not possible to determine how small the shear coefficient (or coherence) 
must be to obtain good agreement in the energy-spectra test for isotropy. Other 
measurements in the UCSD jet with heat addition reported by McConnell(l976) 
on the statistics of the temperature derivative show marked deviations from 
isotropy with the skewness X(dO/dt) of the temperature derivative of order one. 

6. Reynolds number variation of the energy transfer spectra 
The energy transfer spectra are compared in figure 10 for a wide range of the 

turbulent Reynolds number Rh. Three transfer spectra, with R, = 35, 237 and 
951, from Yeh % Van Atta (1973), the CSU grid measurements and the UCSD jet 
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F I G U R E  10. Reynolds number vari&tion of three-dimensional energy transfer spectra for 
35 < R k  < 951. - , R, = 35, Yeh & Van Atta (1973); -*-, R, = 237, CSU grid; 
- -- , R, = 951, UCSD jet. 

measurements respectively are included. There is a rough clustering of the high 
wavenumber tails of the transfer spectra, but they do not appear to collapse onto 
each other at these wavenumbers as one might expect. The Reynolds number 
effects are readily apparent at  low and intermediate wavenumbers. The negative 
peak retains nearly the same shape and magnitude but shifts uniformly to lower 
wavenumbers as the Reynolds number increases. Kolmogorov scaling should not 
be expected to collapse the lower wavenumber data. An alternative scaling using 
the external velocity and length scales suggested by the measurements of Uberoi 
(1963) would tend to collapse the low wavenumber parts of the transfer spectra. 

The form of the energy transfer spectrum at intermediate wavenumbers 
(bounded by the location of the positive and negative peaks of kT) tends towards 
kT w 0 over a range of wavenumbers as R, increases. It has been suggested (see 
Uberoi, for instance) that the inertial subrange corresponds to the wavenumber 
domain for which T (or kT) is identically zero. This notion of an inertial sub- 
range has at times been used synonymously with E N lc-3 behaviour of the 
energy spectrum, but the data presented in figure 5 suggest otherwise. The 
UCSD jet energy spectrum in figure 5 has a nearly k-* range over a decade of 
wavenumbers, but the energy transfer spectrum in figure 9 shows no corre- 
sponding range of wavenumbers over which kT is nearly zero (except for the 
zero-crossing). It may be that the existence of a range of wavenumbers over which 
T E 0 is a sufficient condition for an extensive k-3 range in the energy spectrum, 
but the converse is apparently not valid. 

7. Extrapolation to high Reynolds number flows 
Empirical method 

Measurements of the energy transfer spectra in grid turbulence a t  Reynolds 
numbers R, exceeding lo3 or numerical or theoretical efforts which are capable 
of predicting the transfer spectra at  such Reynolds numbers are not likely to be 
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available in the near future. Empirical estimates are never an entirely satisfactory 
substitute for either theoretical or experimental results, but with only a few 
modest assumptions predictions for the energy transfer spectrum T(k)  can be 
obtained which are remarkably close to the transfer spectra derived from 
measurements at  moderate Reynolds number. We shall see that the predictions 
for moderate Reynolds number are not only qualitatively similar to the measure- 
ments but are generally in adequate quantitative agreement as well. Considering 
the difficulty and expense of performing such experiments at  higher Reynolds 
numbers, the empirical method for extrapolating the measurements at lower 
Reynolds numbers is worth trying. 

An interpolation formula for the three-dimensional energy spectrum was 
suggested by von Kkmhn (1948) as an empirical representation which would 
both describe available measurements and be easy to manipulate mathematically. 
The formula 

E(k)/v$q = a:(L/V)+ (kL)4 [I + (kL)2]* (7 .1)  

is chosen to have E N k-4 for large k and E - k4 for small k. L is the ‘energy’ 
scale and a: is the Kolmogorov constant. The constant a in (7.1) has been evaluated 
by matching the spectral behaviour to the inertial subrange so that E = adk-5. 

The von KBrmhn formula does not describe the exponential-like cut-off of the 
energy spectrum at dissipation-scale wavenumbers (ky = O( l), say). The high 
wavenumbers can be roughly approximated by closure models having origins 
in suggestions of Onsager (1949) and Corrsin (1964) and applied to velocity 
spectra by Pao (1965). They derived formulae for E(k)  by setting aE/at to zero for 
wavenumbers in the inertial subrange and larger, i.e. T(k)  = 2vk2E(k) for 
k >  1/L, where l/L is the wavenumber characterizing the energy scale. The 
transfer term T ( k )  is related to E by a closure model, and I3 is obtained for 
k 9 l/L. The spectral form of Pao, given by 

(7.2) E(k) /v i r  = cc(ky)-8 exp [ - $a(k7,7)4], 

was used to approximate the largest wavenumbers. Other representations for the 
dissipation wavenumbers of the energy spectrum are possible, but for the present 
purposes only minor differences result since we are primarily interested in the 
behaviour of T(k)  at low and intermediate wavenumbers. 

The three-dimensional energy spectrum for all wavenumbers is approximated 
by the combination of (7.1) and (7.2) 

E(k;  L; /3)/viy = a(L/r))  (kL)4 [1+  (kL)2]-yexp [ - $/3(kr)4], (7.3) 

where the parameter z a: has been substituted for a: in the exponential term of 
the Pao spectrum. The parameter p is determined by satisfying the dissipation 
constraint 

Since experimental results herein suggest that self-preservation can provide 
a useful approximation to the energy decay spectrum at, low to moderate 
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Reynolds numbers, the assumption of self-preservation was applied to the 
empirical energy spectrum to estimate energy transfer spectra a t  high Reynolds 
numbers. 

Comparison with measurements 

The empirical spectrum was fitted to the CXU grid and UCXD jet data by suitable 
choice of the parameter a and scale ratio Llr. The empirical spectrum and the 
UCSD jet data are compared in figure 5. The spectra are in reasonable agree- 
ment over most of the wavenumber range but are in poor agreement at high 
wavenumber. The measured and empirical three-dimensional energy decay 
spectra for the jet data are shown in figure 6. It should be noted that, since both 
the empirical and the ‘measured’ decay spectra were determined using the 
approximation of local self-preservation, figure 6 represents an alternative test of 
how well the empirical energy spectrum fits the data. The empirical predictions 
for the energy transfer spectra for the CSU grid data and the UCSD jet data are 
shown in figures 7 and 9 respectively. The agreement is good in the low to 
moderate wavenumber range, but the empirical predictions of the energy transfer 
spectra deviate significantly for both the grid and jet data at high wavenumber. 
This result is consistent with the quality of the fit between measured and 
empirical energy spectra. We assume that the low Reynolds number measure- 
ments of the energy transfer spectrum have defined the high wavenumber portion 
of the transfer spectrum. It is the low and intermediate wavenumber range of the 
transfer spectrum which is difficult to measure a t  large Reynolds number. The 
good agreement between the direct measurement and the empirical prediction 
for the energy transfer spectra supports the utility of both the von K&rmBn-Pao 
spectrum and the approximation of local self-preservation. 

Energy transfer spectrum and the inertial subrunge 

The energy transfer spectra for 1 0 2  6 R, 6 lo5 are shown in figure 11. Kolmo- 
gorov variables provide approximately universal scaling only at the highest 
wavenumbers; this is a result of the inability of Kolmogorov variables to scale 
the energy decay spectrum, and the transfer spectrum scaled with Kolmogorov 
variables can become universal only at large wavenumbers where aE/at 4 D. 

Our purpose here is to relate the predictions for the Reynolds number variation 
of the transfer spectrum to conditions defining the existence of an inertial 
subrange. Bradshaw (1  967) has considered numerous attempts made to specify 
the conditions for the existence of an inertial subrange. He suggests that a 
necessary condition is that the energy transfer through a wavenumber k in the 
inertial subrange must be nearly equal to the total dissipation. Alternatively, 
Uberoi (1963) has implied in a sketch that the net energy transfer spectrum must 
be nearly zero to obtain an inertial subrange. These criteria for the inertial 
subrange can be examined using the present estimates for the energy transfer 
spectra a t  high Reynolds number. 

The presentation of T in figure 11 multiplied by k does not show clearly whether 
or not the energy transfer spectrum itself approaches zero in the inertial subrange, 
but even for R, = lo4-lo5, the transfer function has no region where T w 0 
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FIUURE 11. Empirical three-dimensional energy 

transfer spectra calculated indirectly. 

despite the extensive inertial subrange ( E  - k-8) at these high Reynolds 
numbers. This suggests that T M 0 is a sufficient but not a necessary condition 
for the existence of an inertial subrange. 

A criterion due to Lumley (1964) provides a more suitable bound for the wave- 
number range of the inertial subrange which is approximately coincident with 
the extent of the k-9 region of the energy spectrum. Define the spectral energy 
flux by 

S ( k )  = - T ( k ) d k ,  1: (7.5) 

where S(k)  represents the energy flux from wavenumbers below k to wavenumbers 
above k. The inertial subrange is characterized by constant spectral energy flux 
or, equivalently, a region where the energy transfer T is identically zero. A region 
of non-constant spectral energy flux might be expected to introduce other para- 
meters into the inertial-subrange formulation in contradiction to the requirement 
which permits dependence on 8 and k alone. As Lumley points out, there are two 
assumptions implied here: first, the energy spectrum is determined by the 
spectral energy flux, and second, the energy flux is a constant. Lumley suggests 
that the requirement of constant spectral Aux in the inertial subrange may be too 
stringent, and the second of the two assumptions above should be relaxed to 
S(k)  ‘nearly constant’. If the net transfer into or out of the energy spectrum is 
sufficiently small in comparison with the spectral flux, the inertial subrange is 
at most weakly affected by the small variations in the spectral flux. More 
specifically, since the quantity IS/(dS/dk)l is a measure of the wavenumber incre- 
ment Ak over which 8 varies significantly, comparison of AE with the local 
wavenumber through the ratio Ik/Akl provides a criterion for the wavenumber 
region of nearly constant spectral energy flux. 
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FIGURE 12. The inertial-subrange criterion due to Lumley (1964) calculated for the 
von K&rmBn-Pao empirical energy transfer model. 

The Lumley criterion IkT/SI applied to the empirical system is shown in 
figure 12. The wavenumber range over which IlcT/SI 4 1 corresponds roughly 
to the k-8 range of the empirical energy spectrum. There is qualitative agreement 
between ]kT/sl 1 and inertial-subrange-type behaviour, but it is impossible 
to select a unique value of the ratio IkT/SI which strictly delineates the extent 
of the inertial subrange; separate values of the criterion are required to define 
the low and high wavenumber extent of the inertial subrange. While a precise 
value cannot be given, IkT/Sl < 0.1 provides an approximate criterion for the 
existence of an inertial subrange for Rh > lo3 in this model system. It is clear, 
however, that the criterion of Lumley provides a more satisfactory condition for 
the existence of an inertial subrange than the strict requirement of AS'( k) = constant 
(or T = 0). 

8. Concluding remarks 
Our purpose in this investigation has been to determine the variation with 

Reynolds number of the three-dimensional transfer spectrum. We were able to 
extend the measurements of T(k)  to Reynolds numbers about an order of 
magnitude larger than those previously available, and by using an empirical 
extrapolation with only mild assumptions, we were able to extend the estimates 
of T(k)  to some of the highest Reynolds numbers of interest, comparable with 
the turbulent Reynolds numbers observed in atmospheric measurements. An 
extrapolation of this kind cannot be accepted without caution, but the quality 
of the agreement between the empirical model and the measurements at lower 
Reynolds numbers suggests that errors in estimates for the higher Reynolds 
numbers are probably not significant. The measurements and the extrapolations 
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show that the inertial subrange is roughly coincident with small k T ( k )  instead of 
some earlier notions that T(k)  itself must be small. These results are consistent 
with the ‘nearly constant flux’ arguments of Lumley (1964). 

Measurements of the net energy transfer spectrum T(k)  do not provide informa- 
tion on the relative interaction among different wavenumbers. It would be 
valuable to determine the transfer spectrum T(k,  k’),  which represents the net 
transfer between two spherical wavenumber shells with radii k and k’. The 
measurement of T(k,  k’) is at  least theoretically possible with present hot-wire 
techniques, but it is clear that the experimental effort required is exceedingly 
large and does not appear justified at  this time. Significant questions also remain 
to be answered on the kind of third-order measurements employed in the present 
investigation. 

The data used herein are not the most suitable available for examining the 
interesting question of testing the existence of isotropy with third-order spectral 
techniques. We are a t  present re-examining the data of Van Atta & Chen (1969) 
to investigate the third-order isotropy criterion specified by (2.13). In  addition, 
we plan to examine more closely the question of statistical convergence of the 
third-order cross-spectrum. The rate of convergence for third-order quantities is 
slow, and there is a need for variance estimation techniques for analysing third- 
order spectra. Third-order spectral measurements of this kind in a shear flow 
would provide an important contrast to grid-turbulence measurements. Shear- 
flow data would assist in interpreting the relative approach to local isotropy in 
a flow which does not produce nearly isotropic conditions a t  all wavenumbers. 
The limited jet data analysed herein suggest that dramatic differences would be 
observed among third-order spectra measured in shear and grid flows. 
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